

Many molecules required by all growing organisms (both big and small) are **Biosynthesized** (i.e. enzymes in the body ~ carry out *Organic chemistry* rxns) using:

Carbonyl <u>Condensation</u> reactions Chapter 23

occur in a large number of *metabolic* pathways: esp. *Carbohydrates, Lipids, Proteins*, *Nucleic acids* ~ essential for growth and development...

Important ~ general method for making new **C-C** bonds ~ to build larger MOLECULES ☺

- Administrative
- Background
- Carbonyl condensations: The Aldo reaction
- Dehydration of Aldol products:
 - Synthesis of Enones
- Conjugate Carbonyl Additions:
 - The Michael reaction

Background

Carbonyl condensations: The Aldo reaction

- Dehydration of Aldol products:
 - Synthesis of Enones

- Conjugate Carbonyl Additions:
 - The Michael reaction

Mini SUMMARY

We've reviewed 3 of 4 general carbonyl-group rxns That display two types of behavior:

1) Nucleophilic *addition* and 2) acyl *substitution* rxns

Carbonyl compound behaves as an electrophile when e- rich reagent (Nu:) adds to it

- 3) α *substitution* rxns: carbonyl compounds behave as a nucleophile when converted into it's enol or enolate ion (*last lecture*)
 - 4) In this chapter we'll study briefly how the carbonyl behaves both as an:
 a) electrophile and b) nucleophile

- a) Electrophilic carbonyl group reacts with nucleophiles.
- b) Nucleophilic enolate ion reacts with electrophiles.

Background

Carbonyl condensations: The Aldol reaction

- Dehydration of Aldol products:
 - Synthesis of Enones

- Conjugate Carbonyl Additions:
 - The Michael reaction

Carbonyl condensations: The Aldol reaction

These occur b/w two carbonyl partners and involve a combination of:

- 1) conversion into a) enolate-ion nucleophile that adds to the...
- 2) electrophillic carbonyl group of b) the second carbonyl partner (~α-substitution step)

Mechanism for carbonyl condensation rxn

You draw ☺

1 A carbonyl compound with an α hydrogen atom is converted by base into its enolate ion.

2 The enolate ion acts as a nucleophilic donor and adds to the electrophilic carbonyl group of a second carbonyl compound.

3 Protonation of the tetrahedral alkoxide ion intermediate gives the neutral condensation product and regenerates the base catalyst.

condensation product

A β-hydroxy carbonyl compound

The Aldol RXN: where Aldehydes/ketones w/ α H undergo base cataylzed carbonyl rxn

condensation product!

NOTES: RXN in **equilibrium**

- 1) reaction conditions
- 2) substrate structure
- a) Equilibrium favors condensation product (2) for aldehydes w/ no α substituent (1)
- b) Equilibrium favors reactant for di-substituted aldehydes and ketones

Challenge Question

a) What's the expected product of the following Aldol reaction, what reagent(s) is/are needed? **b**) What's a plausible mechanism you'd expect and what direction does the *equilibrium* favor?

L. Persi, R. Torres proposed mechanism (3/18)

J. Morris suggests more plausible due to angle strain on ring (3/18)

Background

Carbonyl condensations: The Aldo reaction

- Dehydration of Aldol products:
 - Synthesis of Enones

- Conjugate Carbonyl Additions:
 - The Michael reaction

Dehydration of Aldol products: Synthesis of *Enones*

a) β – hydroxy aldehydes or ketones formed in ALDOL rxns can be dehydrated to yield... **b**) α β unsaturated products or "conjugated" *enones*.

a) β-hydroxy ketoneor aldehyde

b) conjugated enone

NOTES: this is the origin of "CODENSATION RXN" name (loss of H2O)

Most alcohols (in base) don't dehydrate easily b/c OH poor leaving group, however ALDO products due b/c of their carbonyl group... HOW'

Dehydration of Aldol products: Synthesis of enones

Notes: More detailed steps – next slides

BASE CATALYZED ACIDIC enune

10-M

Dehydration of Aldol products: Synthesis of enones

Utility of this RXN is that loss of H_2O from RXN mixture (**b**) (i.e. removal of H_2O) can **drive** \rightarrow **a**) ALDOL RXN equilibrium toward product to get 92% yield. \odot

HW 23-3,4

Notes: see previous slide base catalyzed mechanism to remove or p.758 for details

Background

Carbonyl condensations: The Aldo reaction

- Dehydration of Aldol products:
 - Synthesis of Enones

- Conjugate Carbonyl Additions:
 - The Michael reaction

Conjugate Carbonyl Additions:

Recall (Sect 19-13) certain nucleophiles (e.g. amines) react w/ α - β unsaturated ketones To generate *conjugate addition products* vs a direct addition product

Conjugate addition product

A similar **conjugate** addition occurs when a nucelophilic enolated ion reacts w/ a α -β unsaturated carbonyl compound in a process known as....

Conjugate Carbonyl Additions:

The Michael reaction

Involves **a**) stable enolate (derived f/ β Keto ester) or other 1,3 –dicarbonyl compounds that adds to **b**) an unhindered α - β unsaturated ketone (Michael acceptor)

e.g. $H_{3}C \xrightarrow{C} CH_{2} + H_{\beta} \xrightarrow{C} CH_{3} \xrightarrow{1. Na^{+} - OEt, \text{ ethanol}} H_{3}C \xrightarrow{C} CH_{3} \xrightarrow{1. Na^{+} - OEt, \text{ ethanol}} H_{3}C \xrightarrow{C} CH_{3} \xrightarrow{EtO_{2}C} H_{3} H_{4} H_{5} H$

any α β "unsaturated" ketone (carbonyl) system

Mechanism for Michael reaction

You draw ☺

1 The base catalyst removes an acidic alpha proton from the starting β -keto ester to generate a stabilized enolate ion nucleophile.

2 The nucleophile adds to the α,β -unsaturated ketone electrophile in a Michael reaction to generate a new enolate as product.

3 The enolate product abstracts an acidic proton, either from solvent or from starting keto ester, to yield the final addition product.

Important Factors Re: *Therapeutic lead structure* development

Background

Michael acceptors & Quinones are converted by detox *enzymes* (cytochrome p450) in the liver into more toxic intermediates 🕾

Michael acceptors & quinones represent a class of toxicological intermediates which can create hazardous effects in animals that include:

- a) acute cytotoxicity, (cell damage)
- **b**) immunotoxicity, (immuno. suppress)
- **c**) carcinogenesis. (tumor growth)

(A) BENZENE QUINONES

(B) PAH AND EQUINE ESTROGEN QUINONES

(C) QUINONE THIOL-ETHERS

New evidence strongly suggests that the numerous mechanisms of *Michael acceptor* and or quinone toxicity (i.e., alkylation & oxidative stress **ROS**) can be correlated with the known *pathology* (*disease states*) of the parent compound(s).

damages/
destroys them 🕾

Challenge Question

Summing it all UP!

(Medicinal Chemistry & Toxicology)

Identify the compound(s) that may present complications in terms of metabolic induced toxicity by <u>circling</u> the structural part(s) of the molecule(s) that can serve as *Michael acceptors*

mycothiaozole (3)

 IC_{50} = 160.0 pM! Pancreatic (PANC-1) cancer cells Johnson, Morris, Cook, Persi, Ogarrio, Garcia et al., 2020, ACS Med. Chem. Lett.

Challenge Question

Summing it all UP!

(Medicinal Chemistry & Toxicology)

Identify the compound(s) that may present complications in terms of metabolic induced toxicity by *circling* the structural part(s) of the molecule(s) that can serve as *Michael acceptors*

fijianolide B (aka laulimalide) (**2**) IC₅₀ = 3.0 nM Pancreatic (PANC-1) cancer cells Morris, Persi, Johnson et al., **2022**, *ACS Omega*

zampanolide (1) IC_{50} = 2.8 nM, Breast (HCC1806) cancer cells Takahasi-Ruiz, Morris, Johnson et al., 2022 Molecules 20 zampanolide latrunculol A (4) IC_{50} = 440.0 nM, Colon (HCT-116) cancer cells

Vanuatu

$$H_3C \xrightarrow{1} \stackrel{H}{N} \xrightarrow{2} \xrightarrow{4} \xrightarrow{19} \stackrel{OH}{19} \xrightarrow{13} \xrightarrow{16} \xrightarrow{18}$$

C. mycofijiensis:

mycothiaozole (**3**) IC₅₀ = 160.0 pM! Pancreatic (PANC-1) cancer cells Johnson, Morris, Cook, Persi, Ogarrio, Garcia et al., **2020**, *ACS Med. Chem. Lett.*

Amagata et al., 2008, J. Med. Chem.

Michael RXN occurs w/ a wide variety of α - β unsaturated carbonyl compounds

Selected examples are below and important to recognize when moving fwd in Medicinal chemistry and providing FDA approved Drugs as therapeutics to treat disease

TABLE 23-1 Some Michael Acceptor	s and Michael Donors
Michael acceptors	Michael donors
O H ₂ C=CHCH Propenal	Ο Ο RCCH ₂ CR' <i>β</i> -Diketone
O H ₂ C=CHCCH ₃ 3-Buten-2-one	O O \parallel \parallel RCCH $_2$ COEt β -Keto ester
O H ₂ C=CHCOEt Ethyl propenoate	O O EtOCCH ₂ COEt Diethyl malonate
$\begin{array}{c} O \\ \parallel \\ H_2C = CHCNH_2 \end{array}$ Propenamide	O \parallel RCCH $_2$ C \equiv N β -Keto nitrile
H ₂ C=CHC≡N Propenenitrile	RCH ₂ NO ₂ Nitro compound
NO ₂ H ₂ C=CH Nitroethylene	b/c scientists may need to modify them (the <i>Michael acceptor</i> portion of the compound) to make the compound safe and non toxic after it's

HW 23 1, 3, 4, 16, 17

Have a

weekend ©